PROBLEM 4

Consider n strings with rings at both ends. An integer is attached to each ring such that the integers, say a and b which we denote by [a, b], attached to the both ends of a string are different. These pairs of integers identify the strings.

Two strings [a, b] and [c, d] can be connected if one of a, b is equal to one of c, d, by tieing them together at the rings with the same number. The result is called a *chain*. For example, a chain [1, 3, 4] is obtained by connecting two strings [1, 3] and [3, 4].

Similarly, a string and a chain, or two chains can be connected together at the rings with the same integer. For example, a chain [1,3,4] and a string [5,1] can be connected to produce a chain [5,1,3,4]. From two chains [1,3,4] and [2,3,5], a form looking like a cross (call it α for later reference) can be obtained by tieing them at the center of each string. A form looking like a ring (call it β) can be obtained from two strings [1,3,4] and [4,6,1] by connecting them at both ends. In this way various forms can be obtained.

A part of such a form is called *chain* if it is a sequence of strings connected at their ends with the property that no two rings with the same integer appear on it. For example, α contains chains [1,3,2], [1,3,4], [1,3,5], [2,3,1], [2,3,4], etc. of length 3, and β contains chains of length 4 such as [1,3,4,6], [3,4,6,1], [4,6,1,3], where the *length* of a chain is the number of integers on it.

Your task is to write a program to find the maximum length of possible chains.

INPUT

The input file is input.txt, the first line of which contains an integer n $(1 \le n \le 100)$, followed by n lines containing two integers separated by a single space character. The i + 1-st line $(1 \le i \le n)$ containing integers a and b $(1 \le a < b < 100)$ represents a string whose ends are rings with integers a and b.

OUTPUT

The output file should be **output.txt** which should contain the maximum length and end with the Return code.

EXAMPLE

Example Inputs:

Input 1	Input 2	Input 3
7	6	7
13	$1 \ 2$	$1 \ 3$
3 4	$2 \ 3$	24
14	$3\ 4$	35
2 7	45	4 6
$5\ 7$	$1 \ 5$	67
67	2 6	2 6
17		4 7

Example Outputs:

Output 1	Output 2	Output 3
5	6	4