The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Two Currencies

There are N cities in JOI Kingdom, numbered from 1 to N. There are $N-1$ roads in JOI Kingdom, numbered from 1 to $N-1$. The road $i(1 \leq i \leq N-1)$ connects the city A_{i} and the city B_{i} bi-directionally. It is possible to travel from any city to any other city by passing through some of the roads.

There are checkpoints on some of the roads in JOI Kingdom. There are M checkpoints, numbered from 1 to M. The checkpoint $j(1 \leq j \leq M)$ is located on the road P_{j}. In order to pass through it, you need to pay either one gold coin or C_{j} silver coins.

There are Q citizens in JOI Kingdom, numbered from 1 to Q. The citizen $k(1 \leq k \leq Q)$ has X_{k} gold coins and Y_{k} silver coins, and wants to travel from the city S_{k} to the city T_{k}. Since gold coins are valuable, all the citizens want to keep as many gold coins as possible.

Write a program which, given information of the cities, the roads, the checkpoints, and the citizens in JOI Kingdom, for each $k(1 \leq k \leq Q)$, determines whether it is possible for the citizen k to travel from the city S_{k} to the city T_{k}, and, if it is possible, calculates the maximum possible number of gold coins the citizen k can keep.

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N M Q \\
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{N-1} B_{N-1} \\
& P_{1} C_{1} \\
& P_{2} C_{2} \\
& \vdots \\
& P_{M} C_{M} \\
& S_{1} T_{1} X_{1} Y_{1} \\
& S_{2} T_{2} X_{2} Y_{2} \\
& \vdots \\
& S_{Q} T_{Q} X_{Q} Y_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. In the k-th line $(1 \leq k \leq Q)$, if the citizen k can travel from the city S_{k} to the city T_{k}, output the maximum possible number of gold coins the citizen k can keep. Otherwise, output -1 in the k-th line.

Constraints

- $2 \leq N \leq 100000$.
- $1 \leq M \leq 100000$.
- $1 \leq Q \leq 100000$.
- $1 \leq A_{i} \leq N(1 \leq i \leq N-1)$.
- $1 \leq B_{i} \leq N(1 \leq i \leq N-1)$.
- It is possible to travel from any city to any other city by passing through some of the roads.
- $1 \leq P_{j} \leq N-1(1 \leq j \leq M)$.
- $1 \leq C_{j} \leq 10^{9}(1 \leq j \leq M)$.
- $1 \leq S_{k} \leq N(1 \leq k \leq Q)$.
- $1 \leq T_{k} \leq N(1 \leq k \leq Q)$.
- $S_{k} \neq T_{k}(1 \leq k \leq Q)$.
- $0 \leq X_{k} \leq 10^{9}(1 \leq k \leq Q)$.
- $0 \leq Y_{k} \leq 10^{18}(1 \leq k \leq Q)$.
- Given values are all integers.

Subtasks

1. (10 points) $N \leq 2000, M \leq 2000, Q \leq 2000$.
2. (28 points) $C_{1}=C_{2}=\cdots=C_{M}$.
3. (30 points) $A_{i}=i, B_{i}=i+1(1 \leq i \leq N-1)$.
4. (32 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1	
5	4	3
1	2	1
1	3	2
2	4	-1
2	5	
2	9	
2	4	
3	5	
4	7	
3	4	2
5	11	5
2	3	1

The citizen 1 can travel from the city 3 to the city 4 as follows. After the travel, the citizen 1 keeps one gold coin.

1. The citizen 1 travels from the city 3 to the city 1 by passing through the road 2 . There are the checkpoints 1,2 on the road 2 . The citizen 1 pays one gold coin at the checkpoint 1 and passes through it, and 4 silver coins at the checkpoint 2 and passes through it, respectively. After that, the citizen 1 keeps one gold coin and 7 silver coins.
2. The citizen 1 travels from the city 1 to the city 2 by passing through the road 1 . Since there is no checkpoint on the road 1 , the citizen 1 keeps one gold coin and 7 silver coins.
3. The citizen 1 travels from the city 2 to the city 4 by passing through the road 3 . There is the checkpoint 3 on the road 3. The citizen 1 pays 5 silver coins at the checkpoint 3 and passes through it. After that, the citizen 1 keeps one gold coin and 2 silver coins.

Since it is impossible for the citizen 1 to travel by finally keeping more than or equal to 2 gold coins, output 1 in the first line.

The citizen 2 can travel from the city 5 to the city 3 as follows. After the travel, the citizen 2 keeps two gold coins.

1. The citizen 2 travels from the city 5 to the city 2 by passing through the road 4 . There is the checkpoint 4 on the road 4 . The citizen 2 pays one gold coin at the checkpoint 4 and passes through it. After that,

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Contest 1 - Two Currencies

the citizen 2 keeps 3 gold coins and 5 silver coins.
2. The citizen 2 travels from the city 2 to the city 1 by passing through the road 1 . Since there is no checkpoint on the road 1 , the citizen 2 keeps 3 gold coins and 5 silver coins.
3. The citizen 2 travels from the city 1 to the city 3 by passing through the road 2 . On the road 2 , there are the checkpoints 1,2 . The citizen 2 pays one gold coin at the checkpoint 1 and passes through it, and 4 silver coins at the checkpoint 2 and passes through it, respectively. After that, the citizen 2 keeps 2 gold coins and one silver coin.

Since it is impossible for the citizen 2 to travel by finally keeping more than or equal to 3 gold coins, output 2 in the second line.

Since it is impossible for the citizen 3 to travel from the city 2 to the city 3 , output -1 in the third line.
This sample input satisfies the constraints of Subtasks 1, 4 .

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Sample Input 2	Sample Output 2
1079	3
18	6
63	6
59	7
79	7
31	3
34	1
101	2
26	2
56	
94	
74	
74	
24	
74	
74	
14	
8653	
3980	
47615	
7493	
6480	
$\begin{array}{lllll}9 & 10 & 516\end{array}$	
$\begin{array}{llll}5 & 3 & 2\end{array}$	
2843	
6133	

This sample input satisfies the constraints of Subtasks 1, 2, 4 .

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)
$\left.\begin{array}{|ll|l|}\hline \text { Sample Input 3 } & \text { Sample Output 3 } \\ \hline 8 & 7 & 11 \\ 1 & 2 & 7 \\ 2 & 3 & 5 \\ 3 & 4 & 5 \\ 4 & 5 & 5 \\ 5 & 6 & 4 \\ 6 & 7 & \\ 7 & 8 & 2 \\ 4 & 4 & \\ 3 & 7 & \\ 2 & 10 & \\ 5 & 2 & \\ 4 & 1 & \\ 4 & 4 & \\ 5 & 6 & \\ 6 & 3 & 7 \\ 7 & 69 & 55 \\ 3 & 1 & 6 \\ 8 & 8 & 5 \\ 4 & 6 & 4\end{array}\right)$

This sample input satisfies the constraints of Subtasks 1, 3, 4 .

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)

Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Sample Input 4	Sample Output 4
8711	1
18	3
14	1
31	7
36	0
67	4
21	5
52	7
55	8
58	10
47	6
66	
41	
64	
17	
4718	
2451	
$\begin{array}{llll}4 & 2 & 1 & 32\end{array}$	
15721	
25050	
84433	
17616	
48718	
12813	
$\begin{array}{llll}5 & 4 & 10 & 42\end{array}$	
71640	

This sample input satisfies the constraints of Subtasks 1, 4 .

