The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Contest 3 - Tourism

Tourism

JOI Kingdom is an insular country consisting of N islands, numbered from 1 to N. The islands are connected by $N-1$ bridges, numbered from 1 to $N-1$. The bridge $i(1 \leq i \leq N-1)$ connects the island A_{i} and the island B_{i} bidirectionally. It is possible to travel from any island to any other island by passing through a number of bridges.

In JOI Kingdom, there are M sightseeing spots, numbered from 1 to M. The sightseeing spot $j(1 \leq j \leq M)$ is located in the island C_{j}.

There are Q travelers. They plan to visit sightseeing spots in JOI Kingdom. The travelers are numbered from 1 to Q. Each traveler makes a trip in the following way.

1. The traveler chooses an island $x(1 \leq x \leq N)$. Taking an airplane, the traveler arrives at the island x.
2. The traveler takes the following actions a number of times. The order and the kinds of actions are arbitrary.

- The traveler chooses a sightseeing spot in the current island, and visits there.
- The traveler moves to another island by passing through a bridge.

3. Taking an airplane, the traveler leaves JOI Kingdom.

The traveler $k(1 \leq k \leq Q)$ wants to visit all of the sightseeing spots $L_{k}, L_{k}+1, \ldots, R_{k}$. However, since the budget is limited, the traveler k wants to minimize the number of islands where the traveler k visits at least once.

Write a program which, given information of JOI Kingdom and the travelers, calculates, for each k ($1 \leq k \leq$ Q), the minimum possible number of islands where the traveler k visits at least once.

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial

March 18-22, 2023 (Komaba, Tokyo)

Input

Read the following data from the standard input.

$$
\begin{aligned}
& N M Q \\
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{N-1} B_{N-1} \\
& C_{1} C_{2} \cdots C_{M} \\
& L_{1} R_{1} \\
& L_{2} R_{2} \\
& \vdots \\
& L_{Q} R_{Q}
\end{aligned}
$$

Output

Write Q lines to the standard output. The k-th line $(1 \leq k \leq Q)$ of output should contain the minimum possible number of islands where the traveler k visits at least once.

Constraints

- $1 \leq N \leq 100000$.
- $1 \leq M \leq 100000$.
- $1 \leq Q \leq 100000$.
- $1 \leq A_{i} \leq N(1 \leq i \leq N-1)$.
- $1 \leq B_{i} \leq N(1 \leq i \leq N-1)$.
- It is possible to travel from any island to any other island by passing through a number of bridges.
- $1 \leq C_{j} \leq N(1 \leq j \leq M)$.
- $1 \leq L_{k} \leq R_{k} \leq M(1 \leq k \leq Q)$.
- Given values are all integers.

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)
Contest 3 - Tourism

Subtasks

1. (5 points) $N \leq 300, M \leq 300, Q \leq 300$.
2. (5 points) $N \leq 2000, M \leq 2000, Q \leq 2000$.
3. (7 points) $A_{i}=i, B_{i}=i+1(1 \leq i \leq N-1)$.
4. (18 points) $L_{1}=1, R_{k}+1=L_{k+1}(1 \leq k \leq Q-1), R_{Q}=M$.
5. (24 points) $A_{i}=\left\lfloor\frac{i+1}{2}\right\rfloor, B_{i}=i+1(1 \leq i \leq N-1)$. Here, $\lfloor x\rfloor$ is the largest integer not exceeding x.
6. (41 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
762	4
12	6
13	
24	
25	
36	
37	
236457	
13	
46	

The traveler 1 makes a trip in the following way, and visits all of the sightseeing spots $1,2,3$.

1. The traveler 1 arrives at the island 2.
2. The traveler 1 visits the sightseeing spot 1 in the island 2.
3. The traveler 1 moves from the island 2 to the island 1 by passing through the bridge 1 .
4. The traveler 1 moves from the island 1 to the island 3 by passing through the bridge 2 .
5. The traveler 1 visits the sightseeing spot 2 in the island 3.
6. The traveler 1 moves from the island 3 to the island 6 by passing through the bridge 5 .
7. The traveler 1 visits the sightseeing spot 3 in the island 6.
8. The traveler 1 departs from the island 6 and leaves JOI Kingdom.

The islands $1,2,3,6$ are the four islands where the traveler 1 visits at least once. If the number of islands
traveler 1 visits at least once is less than or equal to 3 , it is impossible to visit all of the sightseeing spots $1,2,3$. Therefore, output 4 in the first line.

The traveler 2 makes a trip in the following way, and visits all of the sightseeing spots 4, 5, 6 .

1. The traveler 2 arrives at the island 3 .
2. The traveler 2 moves from the island 3 to the island 7 by passing through the bridge 6 .
3. The traveler 2 visits the sightseeing spot 6 in the island 7 .
4. The traveler 2 moves from the island 7 to the island 3 by passing through the bridge 6 .
5. The traveler 2 moves from the island 3 to the island 1 by passing through the bridge 2 .

6 . The traveler 2 moves from the island 1 to the island 2 by passing through the bridge 1 .
7. The traveler 2 moves from the island 2 to the island 4 by passing through the bridge 3 .
8. The traveler 2 visits the sightseeing spot 4 in the island 4 .
9. The traveler 2 moves from the island 4 to the island 2 by passing through the bridge 3 .
10. The traveler 2 moves from the island 2 to the island 5 by passing through the bridge 4 .
11. The traveler 2 visits the sightseeing spot 5 in the island 5.
12. The traveler 2 departs from the island 5 and leaves JOI Kingdom.

The islands $1,2,3,4,5,7$ are the six islands where the traveler 2 visits at least once. If the number of islands traveler 2 visits at least once is less than or equal to 5 , it is impossible to visit all of the sightseeing spots $4,5,6$. Therefore, output 6 in the second line.

This sample input satisfies the constraints of Subtasks $1,2,4,5,6$.

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)

Contest 3 - Tourism

Sample Input 2	Sample Output 2
889	3
12	4
23	6
34	6
45	3
56	6
67	1
78	6
86435247	3
35	
46	
68	
14	
23	
68	
55	
28	
12	

This sample input satisfies the constraints of Subtasks $1,2,3,6$.

The 22nd Japanese Olympiad in Informatics (JOI 2022/2023)
Spring Training/Qualifying Trial
March 18-22, 2023 (Komaba, Tokyo)
Contest 3 - Tourism

Sample Input 3	Sample Output 3
1079	1
65	6
36	6
93	4
83	3
78	1
71	7
25	5
710	4
84	
$\begin{array}{llllllll}9 & 4 & 10 & 1 & 10 & 7\end{array}$	
44	
13	
13	
67	
36	
33	
15	
25	
12	

This sample input satisfies the constraints of Subtasks 1,2,6.

