鉄道（Railway）

問題名	鉄道（Railway）
入力	標準入力
出力	標準出力
時間制限	2 sec
メモリ制限	256 MB

Zürich と Lugano をつなぐ長さ $s \mathrm{~km}$ の鉄道がある．鉄道は美しいアルプス山脈を通過する ため，乗車中の風景は壮観である。山道のいくつかは鉄道には高すぎるため，路線には t 個の トンネルがある。 i 番目のトンネルは Zürich から $a_{i} \mathrm{~km}$ の地点から始まり，Zürich から b_{i} km の地点で終わる。（したがって，i 番目のトンネルの長さは $b_{i}-a_{i}$ である．）

あなたは 2 つの都市の間を走る列車の時刻表を持っている。Zürich から Lugano に向かう列車は m 本あり，j 番目のものは時刻 c_{j} 分に出発する。Lugano から Zürichに向かう列車は n 本あり，k 番目のものは時刻 d_{k} 分に出発する。線路上を走るすべての列車は，その方向や トンネルに入っているかどうかにかかわらず毎分 1 km の一定の速さで進む。線路の途中には駅はなく，信号で止まることもない。したがって，それぞれの列車は目的地にちょうど s 分か けて到着する。

列車の長さは路線の長さに比べて無視できるほど小さいため，この問題ではそれぞれの列車は点であると仮定せよ．

通常，路線はそれぞれの方向につき 1 本ずつの，合計 2 本の線路を持つ。唯一の例外はトン ネルである．それぞれのトンネルはどちらの方向にも使用できるちょうど 1 本の線路を持つ。

反対向きに走る 2 本の列車がトンネルの外で出会った場合，安全にすれ違うことができる。ち ょうどトンネルの端で出会った場合も同様である。一方で，トンネルの真に内側で出会った場合，衝突する。

トンネルと列車の情報が与えられたとき，衝突が発生するかどうかを判定せよ。

入力

1 行目には， 4 個の整数 $s, t, m, n \quad(1 \leqq s \leqq 1000000000$ ， $0 \leqq t \leqq 100000$ ， $0 \leqq m, n \leqq 2000$ ）が空白を区切りとして書かれている。これらはそれぞれ路線の長さ，トン ネルの個数，Zürich 発の列車の本数，Lugano 発の列車の本数を表す。

2 行目には，t 個の整数 $a_{i}\left(0 \leqq a_{i}<s\right)$ が空白を区切りとして書かれている．これらはトン ネルの始まる地点を表す。

3 行目には，t 個の整数 $b_{i}\left(0<b_{i} \leqq s\right)$ が空白を区切りとして書かれている．これらはトン ネルの終わる地点を表す。

各 $i(1 \leqq i \leqq t)$ について，$a_{i}<b_{i}$ が成立する。さらに，各 $i(1 \leqq i \leqq t-1)$ について， $b_{i}<a_{i+1}$ が成立する。（言い換えれば，それぞれのトンネルは正の長さを持ち，トンネルはど の 2 つも重なることがなく，さらに Zürich からの距離の昇順に与えられる。）

4 行目には，m 個の整数 $c_{j}\left(0 \leqq c_{j} \leqq 1000000000\right)$ が空白を区切りとして書かれている． これらは Zürich 発の列車の出発時刻（分）を表す。時刻は昇順に与えられる。すなわち， $c_{j}<c_{j+1}(1 \leqq j \leqq m-1)$ が成立する。

5 行目には，n 個の整数 $d_{k}\left(0 \leqq d_{k} \leqq 1000000000\right)$ が空白を区切りとして書かれている．
これらは Lugano 発の列車の出発時刻（分）を表す。時刻は昇順に与えられる。すなわち， $d_{k}<d_{k+1}(1 \leqq k \leqq n-1)$ が成立する。

出力

1 回以上の衝突が発生する場合＂YES＂，すべての列車が目的地に安全に到達する場合 ＂NO＂を， 1 行で出力せよ（引用符は除く）．

配点

最後の 1 つを除く小課題では，s と $c_{j}(1 \leqq j \leqq m)$ と $d_{k}(1 \leqq k \leqq n)$ の値は偶数である。
小課題 1 （14 点）：$t, m, n \leqq 100 . s \leqq 5000$ ．
小課題 2 （16 点）：$t \leqq 5000 . s \leqq 1000000$ ．
小課題 3 （41点）：追加の制約はない。
小課題 4 （29点）：追加の制約はない。加えて，s, c_{j}, d_{k} は偶数とは限らない。

標準入力	標準出力
$\begin{aligned} & 100214 \\ & 2050 \\ & 3060 \\ & 120 \\ & 30100200250 \end{aligned}$	NO
$\begin{array}{llll} 1000 & 111 \\ 600 & & \\ 700 & & \\ 100 & & \\ 400 & & & \end{array}$	YES
$\begin{array}{llll} 1000 & 1 & 1 & 1 \\ 600 & & & \\ 700 & & & \\ 100 & & & \\ 300 & & & \end{array}$	NO
$\begin{array}{lll} 1000 & 111 \\ 600 & & \\ 700 & & \\ 100 & & \\ 500 & & \end{array}$	NO

注意

1 つ目の例では，線路上に長さ 100 km の 2 つのトンネルがある。一方は Zürich から 20 km の地点から 30 km の地点に，他方は Zürich から 50 km の地点から 60 km の地点に存在する．Zürich 発の唯一の列車は，Lugano 発のすべての列車と以下のようにすれ違う。

- 1 本目とはZürich から 5 km の地点で出会う。
- 2 本目とは 2 つのトンネルのちょうど中間で出会う．
- 3 本目とは Lugano から 10 km の地点で出会う。
- 4 本目は Zürich 発の列車が目的地に到達した後に出発する。

2 つ目の例では， 2 本の列車が唯一のトンネルのちょうど中央で出会い，衝突する．
3 つ目の例では， 2 本の列車がちょうどトンネルの Zürich 側の端で出会う． 4 つ目の例で は，ちょうどもう一方の端で出会う。いずれの場合も列車はすれ違い，それぞれの目的地に安全に到達する。

