5

Dungeon 3

There is a dungeon with $N+1$ floors. There are M players in the dungeon. The floors are numbered from 1 to $N+1$, starting from the entrance. The players are numbered from 1 to M.

A player uses energy to move from a floor to the next floor. The amount of energy a player uses is A_{i} if he moves from the floor $i(1 \leq i \leq N)$ to the floor $i+1$. As this is a one-way dungeon, the only possible moves between floors are from the floor i to the floor $i+1$ for some $i(1 \leq i \leq N)$.

In each of the floors from the floor 1 to the floor N, inclusive, there is a fountain of recovery. At the fountain of recovery in the floor $i(1 \leq i \leq N)$, a player can increase his energy by 1 paying B_{i} coins. A player can use a fountain multiple times as long as he has needed coins. However, each player has a maximum value of his energy, and his energy cannot exceed that value even if he uses a fountain of recovery.

Now the player $j(1 \leq j \leq M)$ is in the floor S_{j}. His current energy is 0 . His maximum value of energy is U_{j}. He wants to move to the floor T_{j}. His energy cannot be smaller than 0 along the way. How many coins does he need?

Write a program which, given the information of the dungeon and the players, determines whether it is possible for each player to move to the destination so that his energy does not become smaller than 0 along the way. If it is possible to move, the program should calculate the minimum number of coins he needs.

Input

Read the following data from the standard input. Given values are all integers.

$$
\begin{aligned}
& N M \\
& A_{1} \cdots A_{N} \\
& B_{1} \cdots B_{N} \\
& S_{1} T_{1} U_{1} \\
& \vdots \\
& S_{M} T_{M} U_{M}
\end{aligned}
$$

Output

Write M lines to the standard output. The j-th line $(1 \leq j \leq M)$ should contain the minimum number of coins the player j needs to move to the floor T_{j}. If it is impossible for the player j to move to the floor T_{j}, output -1 instead.

Constraints

- $1 \leq N \leq 200000$.
- $1 \leq M \leq 200000$.
- $1 \leq A_{i} \leq 200000(1 \leq i \leq N)$.
- $1 \leq B_{i} \leq 200000(1 \leq i \leq N)$.
- $1 \leq S_{j}<T_{j} \leq N+1(1 \leq j \leq M)$.
- $1 \leq U_{j} \leq 100000000(1 \leq j \leq M)$.

Subtasks

1. (11 points) $N \leq 3000, \quad M \leq 3000$.
2. (14 points) $U_{1}=U_{2}=\cdots=U_{M}$.
3. (31 points) $T_{j}=N+1(1 \leq j \leq M)$.
4. (44 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1				
5	4			-1	
3	4	1	1	4	29
2	5	1	2	1	3
1	6	3		22	
1	6	4			
3	5	1			
2	5	9			

Since the maximum value of energy of the player 1 is 3 , the player 1 cannot move from the floor 2 to the floor 3. Hence the first line of output is -1 .

On the other hand, the maximum value of energy of the player 2 is 4 . The player 2 can move to the floor 6 by the following way.

- In the floor 1, he pays 8 coins, and his energy becomes 4 . Then he moves to the floor 2, and his energy becomes 1 .
- In the floor 2, he pays 15 coins, and his energy becomes 4 . Then he moves to the floor 3, and his energy becomes 0 .
- In the floor 3 , he pays 4 coins, and his energy becomes 4 . Then he moves to the floor 4 , and his energy becomes 3 .
- In the floor 4 , he does not pay coins. Then he moves to the floor 5, and his energy becomes 2 .
- In the floor 5 , he pays 2 coins, and his energy becomes 4 . Then he moves to the floor 6 , and his energy becomes 0 .

In total, the player 2 pays 29 coins. Since it is impossible for the player 2 to move to the floor 6 by paying less than 29 coins, the second line of output is 29 .

Sample Input 2	Sample Output 2
1010	208
$\begin{array}{lllllllllll}1 & 8 & 9 & 1 & 5 & 70 & 6\end{array}$	112
1010281039837	179
21128	248
51128	158
71128	116
$\begin{array}{llll}1 & 11 & 18\end{array}$	234
$\begin{array}{llll}3 & 11 & 18\end{array}$	162
81118	42
41111	-1
61111	
101111	
9115	

This sample input satisfies the constraints of the subtask 3 .

The 20th Japanese Olympiad in Informatics (JOI 2020/2021)
Final Round
February 14, 2021 (Online)

Sample Input 3	Sample Output 3
2020	151
$\begin{array}{lllllllllllllllllllll}2 & 3 & 2 & 11 & 4 & 6 & 9 & 15 & 17 & 14 & 8 & 17 & 3 & 12 & 20 & 4 & 19 & 8 & 4 & 5\end{array}$	591
	4
121567	284
71518	339
161714	517
92197	35
11943	581
$\begin{array}{llll}3 & 18 & 31\end{array}$	254
162070	58
72028	-1
11661	178
3569	519
$\begin{array}{ll}9 & 1015\end{array}$	-1
213134	-1
111923	-1
162014	219
52116	-1
152011	-1
$\begin{array}{llll}7 & 11 & 54\end{array}$	214
$\begin{array}{llll}7 & 1616\end{array}$	
131710	
315135	

